首页> 外文OA文献 >Detection and classification of masses in mammographic images in a multi-kernel approach
【2h】

Detection and classification of masses in mammographic images in a multi-kernel approach

机译:乳腺X线摄影图像质量的检测与分类   多核方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

According to the World Health Organization, breast cancer is the main causeof cancer death among adult women in the world. Although breast cancer occursindiscriminately in countries with several degrees of social and economicdevelopment, among developing and underdevelopment countries mortality ratesare still high, due to low availability of early detection technologies. Fromthe clinical point of view, mammography is still the most effective diagnostictechnology, given the wide diffusion of the use and interpretation of theseimages. Herein this work we propose a method to detect and classifymammographic lesions using the regions of interest of images. Our proposalconsists in decomposing each image using multi-resolution wavelets. Zernikemoments are extracted from each wavelet component. Using this approach we cancombine both texture and shape features, which can be applied both to thedetection and classification of mammary lesions. We used 355 images of fattybreast tissue of IRMA database, with 233 normal instances (no lesion), 72benign, and 83 malignant cases. Classification was performed by using SVM andELM networks with modified kernels, in order to optimize accuracy rates,reaching 94.11%. Considering both accuracy rates and training times, we definedthe ration between average percentage accuracy and average training time in areverse order. Our proposal was 50 times higher than the ratio obtained usingthe best method of the state-of-the-art. As our proposed model can combine highaccuracy rate with low learning time, whenever a new data is received, our workwill be able to save a lot of time, hours, in learning process in relation tothe best method of the state-of-the-art.
机译:根据世界卫生组织的资料,乳腺癌是世界上成年女性癌症死亡的主要原因。尽管在社会和经济发展程度不同的国家中,乳腺癌是不加区别地发生的,但由于早期检测技术的缺乏,发展中国家和不发达国家中的死亡率仍然很高。从临床的角度来看,由于这些图像的使用和解释已广泛传播,因此乳房X线摄影仍然是最有效的诊断技术。在这项工作中,我们提出了一种使用图像的感兴趣区域来检测和分类乳房X线病变的方法。我们的建议包括使用多分辨率小波分解每个图像。从每个小波分量中提取Zernikemoments。使用这种方法,我们可以同时结合纹理和形状特征,将其应用于乳腺病变的检测和分类。我们使用IRMA数据库的355例脂肪性乳腺组织图像,其中有233例正常病例(无病变),72例良性病例和83例恶性病例。通过使用带有改进内核的SVM和ELM网络进行分类,以优化准确率,达到94.11%。考虑到准确率和训练时间,我们以相反的顺序定义了平均百分比准确度和平均训练时间之间的比率。我们的建议比使用最新技术的最佳方法获得的比率高50倍。由于我们提出的模型可以将高精度和低学习时间结合在一起,因此,每当收到新数据时,相对于最新技术的最佳方法,我们的工作就可以节省大量的时间,时间。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号